高中数学说课稿

时间:2024-11-08 14:22:32
有关高中数学说课稿范文合集九篇

有关高中数学说课稿范文合集九篇

作为一位优秀的人民教师,编写说课稿是必不可少的,说课稿有助于提高教师的语言表达能力。怎样写说课稿才更能起到其作用呢?以下是小编精心整理的高中数学说课稿9篇,欢迎阅读与收藏。

高中数学说课稿 篇1

各位领导、专家、同仁:您们好!

我说课的内容是高中数学第二册(上册)第七章《直线和圆的方程》中的第六节“曲线和方程”的第一课时,下面我的说课将从以下几个方面进行阐述:

一、教材分析

教材的地位和作用

“曲线和方程”这节教材揭示了几何中的形与代数中的数相统一的关系,为“作形判数”与“就数论形”的相互转化开辟了途径,这正体现了解析几何这门课的基本思想,对全部解析几何教学有着深远的影响。学生只有透彻理解了曲线和方程的意义,才算是寻得了解析几何学习的入门之径。如果以为学生不真正领悟曲线和方程的关系,照样能求出方程、照样能计算某些难题,因而可以忽视这个基本概念的教学,这不能不说是一种“舍本逐题”的偏见,应该认识到这节“曲线和方程”的开头课是解析几何教学的“重头戏”!

根据以上分析,确立教学重点是:“曲线的方程”与“方程的曲线”的概念;难点是:怎样利用定义验证曲线是方程的曲线,方程是曲线的方程。

二、教学目标

根据教学大纲的要求以及本教材的地位和作用,结合高二学生的认知特点确定教学目标如下:

知识目标:

1、了解曲线上的点与方程的解之间的一一对应关系;

2、初步领会“曲线的方程”与“方程的曲线”的概念;

3、学会根据已有的情景资料找规律,进而分析、判断、归纳结论;

4、强化“形”与“数”一致并相互转化的思想方法。

能力目标:

1、通过直线方程的引入,加强学生对方程的解和曲线上的点的一一对应关系的认识;

2、在形成曲线和方程的概念的教学中,学生经历观察、分析、讨论等数学活动过程,探索出结论,并能有条理的阐述自己的观点;

3、能用所学知识理解新的概念,并能运用概念解决实际问题,从中体会转化化归的思想方法,提高思维品质,发展应用意识。

情感目标:

1、通过概念的引入,让学生感受从特殊到一般的认知规律;

2、通过反例辨析和问题解决,培养合作交流、独立思考等良好的个性品质,以及勇于批判、敢于创新的科学精神。

三、重难点突破

“曲线的方程”与“方程的曲线”的概念是本节的重点,这是由于本节课是由直观表象上升到抽象概念的过程,学生容易对定义中为什么要规定两个关系产生困惑,原因是不理解两者缺一都将扩大概念的外延。由于学生已经具备了用方程表示直线、抛物线等实际模型,积累了感性认识的基础,所以可用举反例的方法来解决困惑,通过反例揭示“两者缺一”与直觉的矛盾,从而又促使学生对概念表述的严密性进行探索,自然地得出定义。为了强化其认识,又决定用集合相等的概念来解释曲线和方程的对应关系,并以此为工具来分析实例,这将有助于学生的理解,有助于学生通其法,知其理。

怎样利用定义验证曲线是方程的曲线,方程是曲线的方程是本节的难点。因为学生在作业中容易犯想当然的错误,通常在由已知曲线建立方程的时候,不验证方程的解为坐标的点在曲线上,就断然得出所求的是曲线方程。这种现象在高考中也屡见不鲜。为了突破难点,本节课设计了三种层次的问题,幻灯片9是概念的直接运用,幻灯片10是概念的逆向运用,幻灯片11是证明曲线的方程。通过这些例题让学生再一次体会“二者”缺一不可。

四、学情分析

此前,学生已知,在建立了直角坐标系后平面内的点和有序实数对之间建立了一一对应关系,已有了用方程(有时以函数式的形式出现)表示曲线的感性认识(特别是二元一次方程表示直线),现在要进一步研究平面内的曲线和含有两个变数的方程之间的关系,是由直观表象上升到抽象概念的过程,对学生有相当大的难度。学生在学习时容易产生的问题是,不理解“曲线上的点的坐标都是方程的解”和“以这个方程的解为坐标的点都是曲线上的点”这两句话在揭示“曲线和方程”关系时各自所起的作用。本节课的教学目标也只能是初步领会,要求学生能答出曲线和方程间必须满足两个关系时才能称作“曲线的方程”和“方程的曲线”,两者缺一不可,并能借助实例指出两个关系的区别。

五、教法分析

新课程强调教师要调整自己的角色,改变传统的教育方式,教师要由传统意义上的知识的传授者和学生的管理者,转变为学生发展的促进者和帮助者,简单的教书匠转变为实践的研究者,或研究的实践者,在教育方式上,也要体现出以人为本,以学生为中心,让学生真正成为学习的主人而不是知识的奴隶,基于此,本节课遵循了概念学习的四个基本步骤,重点采用了问题探究和启发式相结合的教学方法。

从实例、到类比、到推广的问题探究,它对激发学生学习兴趣,培养学习能力都十分有利。启发引导学生得出概念,深化概念,并应用它去讨论、研究和解决问题。在生生合作,师生互动中解决问题,为提高学生分析问题、解决问题的能力打下了基础。

利用多媒体辅助教学,节省了时间,增大了信息量,增强了直观形象性。

六、学法分析

基础教育课程改革要求加强学习方式的改变,提倡学习方式的多样化,各学科课程通过引导学生主动参与,亲身实践,独立思考,合作探究,发展学生搜集处理信息的能力,获取新知识的能力,分析和解决问题的能力,以及交流合作的能力,基于此,本节课从实例引入→类比→推广→得概念→概念挖掘深化→具体应用→作业中的研究性问题的思考,始终让学生主动参与,亲身实践,独立思考,与合作探究相结合,在生生合作,师生互动中,使学生真正成为知识的发现者和知识的研究者。

七、教学过程分析

1、感性认识阶段——以旧带新、提出课题

高中数学说课稿 篇2

一、教材分析

1。《指数函数》在教材中的地位、作用和特点

《指数函数》是人教版高中数学(必修)第一册第二章“函数”的第六节内容,是在学习了《指数》一节内容之后编排的。通过本节课的学习,既可以对指数和函数的概念等知识进一步巩固和深化,又可以为后面进一步学习对数、对数函数尤其是利用互为反函数的图象间的关系来研究对数函数的性质打下坚实的概念和图象基础,又因为《指数函数》是进入高中以后学生遇到的第一个系统研究的函数,对高中阶段研究对数函数、三角函数等完整的函数知识,初步培养函数的应用意识打下了良好的学习基础,所以《指数函数》不仅是本章《函数》的重点内容,也是高中学段的主要研究内容之一,有着不可替代的重要作用。

此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂 ……此处隐藏18251个字……分析,我制定了以下教学目标:

1、理解指数函数的定义,掌握指数函数图像、性质及其简单应用。

2、通过教学培养学生观察、分析、归纳等思维能力,体会数形结合思想和分类讨论思想,增强学生识图用图的能力。

3、培养学生对知识的严谨科学态度和辩证唯物主义观点。

三、教法学法分析

1、学情分析

教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也逐步形成,但由于年龄的原因,思维尽管活跃敏捷,却缺乏冷静深刻。因此思考问题片面不严谨。

2、教法分析:基于以上学情分析,我采用先学生讨论,再教师讲授教学方法。一方面培养学生的观察、分析、归纳等思维能力。另一方面用教师的讲授来纠正由于学生思维过分活跃而走入的误区,和弥补知识的不足,达到能力与知识的双重效果。

3、学法分析

让学生仔细观察书中给出的实际例子,使他们发现指数函数与现实生活息息相关。再根据高一学生爱动脑懒动手的特点,让学生自己描点画图,画出指数函数的图像,继而用自己的语言总结指数函数的性质,学生经历了探究的过程,培养探究能力和抽象概括的能力。

四、教学过程

(一)创设情景

问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂 次后,得到的细胞分裂的个数 与 之间,构成一个函数关系,能写出 与 之间的函数关系式吗?

学生回答: 与 之间的关系式,可以表示为 。

问题2:折纸问题:让学生动手折纸

学生回答:①对折的次数 与所得的层数 之间的关系,得出结论

②对折的次数 与折后面积 之间的关系(记折前纸张面积为1),得出结论

问题3:《庄子。天下篇》中写到“一尺之棰,日取其半,万世不竭”。

学生回答:写出取 次后,木棰的剩留量与 与 的函数关系式。

设计意图:

(1)让学生在问题的情景中发现问题,遇到挑战,激发斗志,又引导学生在简单的具体问题中抽象出共性,体验从简单到复杂,从特殊到一般的认知规律。从而引入两种常见的指数函数① ②

(2)让学生感受我们生活中存在这样的指数函数模型,便于学生接

受指数函数的形式。

(二)导入新课

引导学生观察,三个函数中,底数是常数,指数是自变量。

设计意图:充实实例,突出底数a的取值范围,让学生体会到数学来源于生产生活实际。函数 分别以 的数为底,加深对定义的感性认识,为顺利引出指数函数定义作铺垫。

(三)新课讲授

1.指数函数的定义

一般地,函数 叫做指数函数,其中 是自变量,函数的定义域是R。

含义:

设计意图:为 按两种情况得出指数函数性质作铺垫。若学生回答不合适,引导学生用区间表示:

问题:指数函数定义中,为什么规定“ ”如果不这样规定会出现什么情况?

设计意图:教师首先提出问题:为什么要规定底数大于0且不等于1呢?这是本节的一个难点,为突破难点,采取学生自由讨论的形式,达到互相启发,补充,活跃气氛,激发兴趣的目的。

对于底数的分类,可将问题分解为:

(1)若 会有什么问题?(如 ,则在实数范围内相应的函数值不存在)

(2)若 会有什么问题?(对于 , 都无意义)

(3)若 又会怎么样?( 无论 取何值,它总是1,对它没有研究的必要.)

师:为了避免上述各种情况的发生,所以规定 。

在这里要注意生生之间、师生之间的对话。

设计意图:认识清楚底数a的特殊规定,才能深刻理解指数函数的定义域是R;并为学习对数函数,认识指数与对数函数关系打基础。

教师还要提醒学生指数函数的定义是形式定义,必须在形式上一模一样才行,然后把问题引向深入。

1:指出下列函数那些是指数函数:

2:若函数 是指数函数,则

3:已知 是指数函数,且 ,求函数 的解析式。

设计意图 :加深学生对指数函数定义和呈现形式的理解。

2.指数函数的图像及性质

在同一平面直角坐标系内画出下列指数函数的图象

画函数图象的步骤:列表、描点、连线

思考如何列表取值?

教师与学生共同作出 图像。

设计意图:在理解指数函数定义的基础上掌握指数函数的图像与性质,是本节的重点。关键在于弄清底数a对于函数值变化的影响。对于 时函数值变化的不同情况,学生往往容易混淆,这是教学中的一个难点。为此,必须利用图像,数形结合。教师亲自板演,学生亲自在课前准备好的坐标系里画图,而不是采用几何画板直接得到图像,目的是使学生更加信服,加深印象,并为以后画图解题,采用数形结合思想方法打下基础。

利用几何画板演示函数 的图象,观察分析图像的共同特征。由特殊到一般,得出指数函数 的图象特征,进一步得出图象性质:

教师组织学生结合图像讨论指数函数的性质。

设计意图:这是本节课的重点和难点,要充分调动学生的积极性、主动性,发挥他们的潜能,尽量由学生自主得出性质,以便能够更深刻的记忆、更熟练的运用。

师生共同总结指数函数的性质,教师边总结边板书。

特别地,函数值的分布情况如下:

设计意图:再次强调指数函数的单调性与底数a的关系,并具体分析了函数值的分布情况,深刻理解指数函数值域情况。

(四)巩固与练习

例1: 比较下列各题中两值的大小

教师引导学生观察这些指数值的特征,思考比较大小的方法。

(1)(2)两题底相同,指数不同,(3)(4)两题可化为同底的,可以利用函数的单调性比较大小。

(5)题底不同,指数相同,可以利用函数的图像比较大小。

(6)题底不同,指数也不同,可以借助中介值比较大小。

例2:已知下列不等式 , 比较 的大小 :

设计意图:这是指数函数性质的简单应用,使学生在解题过程中加深对指数函数的图像及性质的理解和记忆。

(五)课堂小结

通过本节课的学习,你学到了哪些知识?

你又掌握了哪些数学思想方法?

你能将指数函数的学习与实际生活联系起来吗?

设计意图:让学生在小结中明确本节课的学习内容,强化本节课的学习重点,并为后续学习打下基础。

(六)布置作业

1、练习B组第2题;习题3-1A组第3题

2、A先生从今天开始每天给你10万元,而你承担如下任务:第一天给A先生1元,第二天给A先生2元,,第三天给A先生4元,第四天给A先生8元,依次下去,…,A先生要和你签定15天的合同,你同意吗?又A先生要和你签定30天的合同,你能签这个合同吗?

3、观察指数函数 的图象,比较 的大小。

《有关高中数学说课稿范文合集九篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式