《鸡兔同笼》数学教学反思

时间:2024-10-29 16:14:31
《鸡兔同笼》数学教学反思

《鸡兔同笼》数学教学反思

身为一位到岗不久的教师,我们的工作之一就是教学,写教学反思可以很好的把我们的教学记录下来,那么应当如何写教学反思呢?以下是小编为大家收集的《鸡兔同笼》数学教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。

《鸡兔同笼》数学教学反思1

对于我班多数的学生来说,学习《鸡兔同笼》可能会有一定的难度。所以在这节课当中,我主要借助教材上的列表法同时结合引导学生画图的方法,再配合假设法。充分运用了动手操作这个手段,让学生弄懂鸡兔同笼问题的基本解题思路。

例:鸡兔同笼,有20只头,54条腿,鸡、兔各有多少只?

师生共同经历了三种不同的列表方法:逐一列表法、、跳跃式列表法、取中列表法后问:能用图形来表示鸡兔头和腿之间的关系吗?

引导学生画图的方法去试:先画20个圆圈表示20个头,再在每个动物下面画两条腿,20只动物只用了40条腿,还多出14条腿,把剩下的14条腿要给其中的几只动物添上呢?(7只动物分别添2条腿)。这7只就是兔子,另外的13只就是鸡。这时候有学生问能把动物都看成是4条腿的吗?在师生们的共同操作下再把腿依次减少,也得到了同样的结论。

虽然这只是一个简单操作活动,但是,在画图的过程中充分调动了学生的积极性,经历了一个探索的过程,这时候再介绍假设法就水到渠成了。也实现了运用多种方法解决问题的目的。起到了意想不到的效果。

《鸡兔同笼》数学教学反思2

1、教学目标的定位

我把“鸡兔同笼”这个内容划分为两个课时,本节课为第一个课时,在本节课中重点研究解决问题的一般策略——列表。我想通过本节课列表发现的规律为探索新策略奠定一定的基础。在教学过程中,我给学生充分的时间他们经历列表、尝试和不断调整的过程,从中对于列表策略有所体会。学生在这个过程中也出现了多种列表方法,对于多种列表方法引导学生对方法进行优化,从而达到能灵活运用列表解决鸡兔同笼问题。

教学中我补充了其他的解法,但是却分散了学生的注意力,影响了学生对列表方法这一常用方法的掌握。这是本节课的遗憾之处。

2、凸现学习价值

我觉得学习要让学生感兴趣地去学,发自内心的想去学,觉得学习是有用的。而鸡兔同笼问题来于生活。但它高与生活,它需要用一些数学策略去解决,而学习策略以后用来解决生活中的问题。因此在课堂小结时我放手让学生对生活中类似于鸡兔同笼问题的举例,让学生体会到现实生活中此类问题是广泛存在的。进而凸显了本节课的价值。

3、关注结果,也关注过程

结果是比较直接的,容易被大家重视,而过程也是不可忽视的。我们不仅要关注结果同时也需要关注过程。在解题的过程中学生的思维是一大亮点,有些学生想法很有创意但算错了,这样的学生我们应该给予表扬和肯定。

本节课总的来说把我自己定的目标是完成了,但是还有许多值得思考的问题。比如说如何把北师大版的教材和人教版的教材进行结合,让学生更容易理解,展示自己的机会更多,使不同思维水平的学生对于这类问题真正巩固

《鸡兔同笼》数学教学反思3

昨晚在家里与峰讨论,明天俞老师上“鸡图同笼”会怎样上呢?因为鸡兔同笼在五年级都已经学了,学生也会解决一些变式的题目,难道他会让学生解一些更难的题目,那么又会怎样来组织材料呢?是不是会解决各种方法之间的联系?....带着很多的猜想走进了今天俞老师的课堂。(很高兴猜中了一点:解决各种方法之间的联系,但是万万没有想到俞老师会用这样的组织方式,从一至六年级学生的解题方法来贯穿整节课),俞老师那幽默风趣的语言、孩子们那精彩的表现赢来了台下听课老师的阵阵掌声。整节课下来,使我体会到了“站在讲台上我就是数学”这句话的真正含义!

一、导入

1、出示一个鸡兔同笼的简单题目(鸡兔头有7个,有脚22只,问鸡兔各有几只?)

t了解学情

2、一、二、三四、五六、七八年级的学生分别怎样来做这个题目。

学生独立尝试

3、s1:二年级用凑数的方法。五六年级用假设的方法。

s2:五六年级还可以用方程解。

4、t:三种方法了,一年级可以用什么方法?

s:用画的方法。

t:用一年级的方法画。(先鸡头再变成兔头)

t:七八年级是怎样解决的呢?

s:1只鸡和1只兔为1组22除以6(用抬脚法)t:归入到三、年级

二、讨论各种方法的异

1、面对这种方法你有什么想法?

t:你认为这四中方法哪种方法最简单?

t:最难的是哪一种?

学生得出数据大的时候,画的方法很难。

为什么一年级会做更难的呢?

s:因为一二年级的做法思路简单。

t:各种方法的主要特征?

s:第一种方法的特征是画出来

s:第二种方法的特征是凑出来

s:第三种方法的特征是算出来

s:第四种方法的特征是解出来

三、分类

1、t:四种方法分成两类,你认为怎样分?

s1:一、二种为一类 三、四为一类

t:还有没有别的分类呢?

(在老师的一只手举起来了,两只手举起来了,三只手举起来了...在耐心的等待中,学生的思维又进入了积极的状态中)

s2:一、四为一种、二三为一种。

小组讨论。画的一类。

s3:一、三为一种,二四为一种。

一、三都是假设的。

二、四都是设鸡为1只,兔为7-1,同方程的解。

t:三种分类,还有吗?

s:一、二三为一种,四为一种,根据有没有*

s:其实怎么分都可以,他们都有共同点。

t:四种方法一样在哪里?

s:都是用假设的方法。(第五种)

四、优化分类

t:哪一种分类方法最有智慧?

s:一二为一类、三、四为一类,因为一二形象化、三四简单化。

三是一的简单化 二是四的形象化

一是三的形象化 四是二的简单化

t:三四是一二的升级版。

t:如果一个小朋友学不会,你怎么教他?

五、小结

面对这份材料,你有什么想法?

数学有共同点,简单带来复杂,复杂的带来简单。

生:数学是一步一步的演化而来的。

t:我们不学猴子摘了玉米扔玉米,摘了桃子扔桃子...从懵懵懂懂的一年级到六年级,学了不要扔。

《鸡兔同笼》数学教学反思4

《鸡兔同笼》一课是北师大版小学数学五年级上册“数学好玩”板块中“尝试与猜测”一课的内容,本节课思维含量大,对学生来说难学 ……此处隐藏6910个字……历,相对讲授和练习的时间就少了。象鸡兔同笼这样的问题学生掌握假设法,不反复练习是很容易遗忘的。但是一节课的时间是有限的。孩子的经历也是需要大量的时间。就我们现在的价值观来取舍,我们选择了让孩子来自己体会尝试与猜测的快乐!可是,这个孩子的一句话却一直在我的心里回响:“老师,那样太麻烦了,请你告诉我吧”孩子有他自己的价值取向,他认为猜测再调整太麻烦,当他没有学到“假设法”时,他没有比较。但当他比较之后,他执着的选择了这个简洁的方法。虽然这个方法对于一个孩子的思维来说还是有点生涩难懂。但是,简洁明了不正是数学的魅力吗?我们总是想通过一些别的东西让孩子感受数学的美,当孩子感到数学的魅力去追寻时,我们还迟疑什么呢?对于课改,我们应以平常心去看待。我想,以后我遇到这样的问题,我一定不会迟疑。我会很高兴的告诉他:“孩子,你选择了最简单的方法,老师乐意给你再讲一遍。”

《鸡兔同笼》数学教学反思10

本节课我从较简单的问题入手,让学生尝试解决,熟悉此类题型的一般思路,再让学生以填表的方式初步体验鸡兔同笼情况下两种动物的只数和脚的数量之间的关系,同时探索随着鸡兔只数的变化,脚的数量也跟着变化的规律。通过展开小组讨论,引导学生从体验鸡兔同笼中鸡兔的头数和脚的只数关系到用“假设法”和列方程解的方法经历探究过程,此环节是本课的重点,学生从体验、尝试到此处的讨论、汇报,个人或集体的智慧在这里得到展现,方程解、算术解对于大部分学生来说至少有一种方法是他自己理解或掌握的。

但是,可能是由于我课前准备不够充分,或者驾驭课堂的能力有限,在学生汇报的过程中没有做到机敏地倾听和机智地诱导,对于学生的列式没有指明理由,因此感觉学生在全班交流的过程中出现不能理解的情况。我觉得可能是在处理鸡兔只数和脚的数量变化规律的推导过程时,我直接让学生通过表格的形式进行观察,并没有引导学生到比较实际的方向上。如果我能插入具体的鸡和兔的只数变化时的动态图像,学生应该能更加直观的体会到其中的规律,那么对后面的教学展开将易如反掌。由于此处设计的失误,导致后面的方程解的方法时间不够,课堂巩固练习也没能很好的展开。我想这也可能是我在设计教案时并没有准确考虑到学生自身的实际认知水平,本课内容安排过多。如果下次再次教学鸡兔同笼,我想我会把假设法和列方程解的方法分成两个课时,争取让大部分学生都能从多角度思考,运用多种方法来解题。

《鸡兔同笼》数学教学反思11

通过研读教材和教学用书,我知道鸡兔同笼问题最早出现在我国古代的一本数学著作《孙子算经》中,虽历经1500多年,该类问题还是向我们展现出了其巨大的魅力。二、三年级的奥数中有,五、六年级的教材中有,到了初中还要学,那么该类问题中究竟蕴含着怎样的数学思想,我们在教学中应该怎样构建该类问题模型,教给学生解决该类问题的方法,使学生的数学思维得到相应的发展呢?带着这样的思考,我不断地查阅资料,寻找我课堂教学的立足点。很幸运的是在查阅资料的过程中我有机会读到了《“鸡兔同笼”问题中的数学思想方法及其渗透策略》这篇文章,其中有这样一段话给了我很大的启发。

这段话给我这节课的教学设计起到了很好的理论支撑的作用。这段话中提到“当转化、猜想、列举、画图、假设、建模、代数、抬脚等多种数学思想方法同时作用于“鸡兔同笼”问题中时,它们之间必然存在相互关联之处。转化为猜想、列举、画图等提供了便捷,猜想是列举的开始,列举则是假设的前奏,画图是对列举的结果的形象呈现和为假设提供的直观支撑,假设是对前面诸法的有效提升,建模则是假设的必然结果,代数是假设的联想产物,抬脚无非是假设的另一种特殊形式。”

“如果按思想方法的作用给其分类,转化是解决“鸡兔同笼”问题中的基础性的思想方法,不可少之;猜测、列举、画图、抬脚是解决“鸡兔同笼”问题中的颇有局限性的思想方法,虽为假设做好了铺垫或延伸,但会受到数目大小或奇偶性的限制,不能广泛用之;真正能够适应于此类问题的具有普遍意义的一般性方法,无疑还是假设和代数的思想方法。如果按思想方法的新旧给上述思想方法分类,转化、猜想、列举、画图、建模和代数的思想方法,都是在前面教学中教师多次渗透、学生领悟较深的思想方法,惟有假设和抬脚才是本节课中新出现的思想方法,而抬脚不过是特殊的假设,且具有很强的局限性。由此看来,学生真正最需要获得的,又能适应解决问题普遍性要求的一种新的数学思想方法就是假设。”在进行了充分的思考与备课之后,我如期的上了这节课,通过对这节课的实际教学,检查了学生这节课的学习效果之后,我对本节课有了以下几点反思:

1、体现了解决问题策略的多样化与优化

鸡兔同笼问题作为六年级数学广角的内容,那它的思维含量必然很高,由于学生原有认知背景的不同,他们对解答本课时的题目存在较大的差异,所以,在教学的过程中,不能提出统一的要求,要允许不同的学生采用不同的解题方法。本节课,师生共同经历了六种不同的方法:列表法、假设法、列方程、画图法、抬脚法即古人的砍足法,在进行练习时,我先让学生选择自己喜欢的方法进行接的解答,指名生汇报后,进一步问:“还可以怎样解?”促进学生去思考更多的解法,并尽可能多的让学生说出解法,最后比较哪种算法比较好。从列表的枚举法到假设的算术法,不仅从思维上层层递进,而且更好地体现了解决问题策略的多样化与优化。

2、注重了数学思想、数学文化的传承

“鸡兔同笼”是我国民间广为流传的数学趣题,教学中,我从该趣题引入,到解决该趣题,到感悟古人解决该类问题的方法,揭去了它令人生畏的奥数面纱,还其生动有趣的一面。通过学习,不仅使学生感受了祖先的聪明才智,渗透一种古代数学文化,更重要的是体会了其中蕴含的丰富数学思想方法,培养了学生的学习兴趣和能力。如:用容易探究的小数量替代《孙子算经》原题中的大数量的“替换法”解决问题,渗透了转化的思想和方法;用“算术法”解决问题,渗透了假设的思想和方法;用“方程法”解决问题,渗透了代数的思想和方法等等。

3、形成了假设的数学思想

课前,我就感受到了这节课容量大,学生难理解,如果一节课中要求学生理解所有的思想内涵,必将导致课堂内容学习的拥堵和孩子们学习的不知所措。教学中,我并没有平均分配学习时间和关注度,而是结合孩子们认知方式的,选取了算术解决的假设模型为本课数学思想的重点去渗透,让孩子们在学习解决问题的过程中,在不知不觉的对比中,体会数学思想。正如一些听课老师所说的,学生能够提出用假设法解决鸡兔同笼问题,那这节课的教学目标就已经达到了,因为他已经体验和形成了假设的数学思想。

4、构建了该类问题的数学模型

在学生重点掌握了两种解题思路后,我话锋一转,告诉同学们“鸡兔同笼”问题并不单指“鸡兔同笼”,该类问题在我们的生活中经常遇到,如龟鹤问题、民谣中的人狗问题、租大船小船问题等。明确其在生活中的应用,体现数学的生活味和应用价值。让学生感受到“鸡兔同笼”问题的学习,贵在学习一种假设推理与代数方程的思想方法,贵在用来解决生活中类似于鸡兔同笼的变式问题。拓宽了对“鸡兔同笼”问题的认识,构建了该类问题的数学模型,形成了知识的迁移。

《《鸡兔同笼》数学教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式